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We have theoretically studied propagation of exciton-polaritons in deterministic aperiodic multiple-
quantum-well structures, particularly, in the Fibonacci and Thue-Morse chains. The attention is concentrated on
the structures tuned to the resonant Bragg condition with two-dimensional quantum-well exciton. Depending
on the number of wells, the super-radiant either photonic-quasicrystal regimes are realized in these aperiodic
structures. For moderate values of the exciton nonradiative damping rate �, the developed theory based on the
two-wave approximation allows one to perceive and describe analytically the exact transfer-matrix computa-
tions for transmittance and reflectance spectra in the whole frequency range except for a narrow region near the
exciton resonance �0. In this region the optical spectra and the exciton-polariton dispersion demonstrate
scaling invariance and self-similarity which can be interpreted in terms of the “band-edge” cycle of the trace
map, in the case of Fibonacci structures, and in terms of zero reflection frequencies, in the case of Thue-Morse
structures. With decreasing �, in the whole allowed polariton band the two-wave approximation stops to be
valid, and a transition occurs from Bloch-like to localized states, with modes closer to �0 becoming localized
first.
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I. INTRODUCTION

Quasicrystalline and other deterministic aperiodic struc-
tures are one of the modern fields in photonics research.1,2

Due to a long-range order such structures can form wide
band gaps in energy spectra as in periodic photonic
crystals3,4 and simultaneously possess localized states as in
disordered media.5 It is well known that photonic crystals
allow strong enhancement of the light-matter interaction. The
elementary excitations in resonant photonic crystals, where
the dielectric response of the constituents has resonances at
certain frequencies, are half-light half-matter waves termed
as polaritons. Polaritonic properties of quasiperiodic multi-
layered structures have been extensively studied for plas-
mons and spin waves, see the review6 as well as for embed-
ded organic dye molecules.7 Nevertheless, propagation of
polaritons in one-dimensional �1D� resonant photonic quasi-
crystals has attracted attention quite recently.8–10 Such sys-
tems can be realized on the basis of long-range ordered mul-
tiple quantum wells �MQWs� being already widely
investigated but only in case of the periodic order.11–21

In our previous work8 we have formulated the resonant
Bragg condition for the quasiperiodic Fibonacci MQWs and
shown that the MQW structure tuned to this condition exhib-
its a super-radiant behavior, for a small number N of wells
�area of the reflectivity spectral peak grows �N�, and
photonic-crystal-like behavior, for large values of N �reflec-
tivity saturates at band-gap regions�. Moreover, in order to
describe the light propagation in the infinite Fibonacci
MQWs we have applied a two-wave approximation and de-
rived equations for the edges of the two wide exciton-
polariton band gaps �or pseudogaps� where the light waves
are strongly evanescent. The fabrication and characterization
of light-emitting one-dimensional photonic quasicrystals
based on excitonic resonances have been reported in Refs. 9
and 10. The measured linear and nonlinear reflectivity spec-

tra as a function of detuning between the incident light and
Bragg wavelengths are in good agreement with the theoreti-
cal calculations based on the transfer-matrix approach, in-
cluding the existence of a structured dip in the pronounced
super-radiant spectral maximum. When QW number in-
creases this dip evolves into the allowed band, separating the
two polariton band gaps. The presence of two gaps instead of
one is a striking difference between the periodic and Fi-
bonacci Bragg structures. Revealing the fundamental prob-
lem of wave propagation in a nonperiodic multilayered me-
dium, such spectrum is also more promising, e.g., for optical
switching, than that in the periodic case.22 Further study of
consequences of the deterministic nonperiodicity on the
spectral features is therefore highly desired, including the
systems with optical resonances.

The studies8–10 have left open important questions. First
of all, a question arises to what extend the two-wave ap-
proximation can be used. In this approximation only two
plane waves, exp�iKz� and exp�i�K−G�z�, are taken into
consideration, where G is the diffraction vector satisfying the
Bragg condition at the exciton resonance frequency �0.
Since the structure factor of an aperiodic system has an infi-
nite number of incommensurate diffraction vectors, it is in-
tuitively unclear if the two-wave theory not only can predict
the band-gap edges but also is applicable to describe the
optical properties of aperiodic deterministic structures and
provide physical insight into the processes of light reflection,
transmission, and absorption. Taking into account that the
intensive studies of electronic and nonresonant photonic ape-
riodic systems23–29 demonstrated fractal and semi-similarity
properties one may expect the two-wave approximation at
least to break down for a certain range of the system param-
eters and in a certain frequency region and, instead, the sys-
tem to exhibit scaling behavior. The present paper addresses
the above questions with particular references to the Fi-
bonacci and Thue-Morse sequences, the former being a 1D
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quasicrystal and the latter being a nonquasicrystalline aperi-
odic structure.

The paper is organized as follows. In Secs. II and III we
define the systems under study, present the results of the
exact transfer-matrix computation in the super-radiant and
photonic-crystal regimes and make their general analysis. In
Sec. IV we apply the two-wave approximation to derive ana-
lytical formulas for the light reflection and transmission co-
efficients. Comparison with the exact computational results
shows that the approximate description is valid in a surpris-
ingly wide range of the light frequency �, the number N of
QWs, and the values of radiative ��0� and nonradiative ���
decay rates of a two-dimensional exciton. In the close vicin-
ity to the exciton resonance frequency �0, where ��−�0�
��0, the two-wave approximation is completely invalid. In
Sec. V we focus on this spectral range where the both studied
aperiodic structures demonstrate scaling invariance of optical
properties. Section VI presents the conclusions. In the Ap-
pendix the consistency of the two-wave approximation is
questioned in terms of the perturbation theory going beyond
this approximation.

II. APERIODIC MULTIPLE-QUANTUM-WELL
STRUCTURES

Here we present the definitions of the aperiodic MQW
chains considered in this work. The structure consists of N
semiconductor QWs embedded in the dielectric matrix with
the refractive index nb. Each QW is characterized by the
exciton resonance frequency �0, exciton radiative decay rate
�0 and nonradiative damping �. We neglect the dielectric
contrast assuming the background refractive index of a QW
to coincide with nb. The center of the mth QW �m=1. . .N� is
located at the point z=zm, and the points zm form an aperi-
odic lattice. Three ways to define a 1D deterministic aperi-
odic lattice are based on the substitution rules,28 analytical
expression for the spacings between the lattice sites,23 and
the cut-and-project method.30,31

We focus on the binary sequences where the interwell
spacing takes on two values, a or b. Such structures can be
associated with a word consisting of the letters A and B,
where each letter stands for the corresponding barrier. The
QW arrangement is determined by the substitutions acting on
the segments A and B,

A → ��A� = A1A2 . . . A�+�,

B → ��B� = B1B2 . . . B	+
. �1�

Each of the letters Ak and Bk in the right-hand side of Eq. �1�
stands for A or B, � and � denote the number of letters A
and B in ��A�, and 	 and 
 are the numbers of A and B in
��B�, respectively.32 The scattering properties of the QW
sequence are described by the structure factor

f�q� = lim
N→�

f�q,N� , �2�

f�q,N� =
1

N
�
m=1

N

e2iqzm. �3�

Under certain conditions28,33 for the numbers �, �, 	, and 

the structure defined by Eq. �1� is a quasicrystal so that, in
the limit N→�, structure factor �3� consists of 
 peaks re-
sponsible for the Bragg diffraction and characterized by two
integers h and h�,

f�q� = �
h,h�=−�

�


2q,Ghh�
fhh�, �4�

Ghh� =
2�

d̄
�h +

h�

t
� . �5�

The parameter t in Eq. �5� is related by

t = 1 +
NB
NA

�6�

with the numbers NB ,NA of the blocks B and A in the infi-
nitely extending lattice. The value of t in Eq. �6� can be also
expressed as t=1+ �1−�� /	, where 1= �l+	l2+4n� /2, l
=�+
, and n=�	−�
; for the quasicrystals n must be equal

to �1.34 The length d̄= �a−b� / t+b in Eq. �5� is the mean
period of the aperiodic lattice. In the periodic case where a


b
 d̄, the diffraction vectors reduce to a single-index set

Gh=2�h / d̄ with the structure-factor coefficients �fh�=1. For
a�b and irrational values of t, the diffraction vectors �Eq.
�5�� fill the wave-vector axis in a dense quasicontinuous way
and the values of �fhh�� lie inside the interval �0,1�. Note that,

within the uncertainty ��Nd̄�−1, the symbol 
2q,Ghh�
in Eq.

�4� is the Kronecker delta: 
2q,Ghh�
=1 when 2q=Ghh� and

zero when 2q is detuned from the Bragg condition. The
structure factor35 defined without the prefactor 1 /N in Eq. �3�
is obtained by the replacement of the Kronecker symbol in

Eq. �4� by the functional �2� / d̄�
�2q−Ghh��.
The most famous 1D quasicrystal is the Fibonacci se-

quence ABAABABA. . . determined by the substitutions31

A → AB, B → A . �7�

For the canonical Fibonacci lattice the ratios NA /NB and a /b
are both equal to the golden mean, �= �	5+1� /2. The non-
canonical Fibonacci structures with a /b�� are considered in
Ref. 10 and lie beyond the scope of this paper.

Substitution rule �7� can be generalized in many ways to
provide other types of 1D quasicrystals. It has been proved in
Refs. 28 and 36 that any binary 1D quasicrystal can be ob-
tained by substitutions composed of different elementary in-
flations, e.g.,

A → AnB, B → A, n = 1,2. . . �8�

For arbitrary values of � ,� ,	 and 
, the structure defined by
Eq. �1� does not form a quasicrystal and structure factor �2�
is not given just by superposition of 
 peaks. For example,
the substitution
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A → AB, B → BA �9�

defines the Thue-Morse lattice ABBABAAB. . . with a sin-

gular continuous structure factor and the mean period d̄= �a
+b� /2.37 For the Thue-Morse QW structure the function
f�q ,N� in Eq. �3� tends to zero when N→� as a power of N
at any q except certain singular values. The latter form a
series

2q = Gh =
�h

d̄
, h = 0, � 1. . . �10�

with the structure factor given by38

�fh
�TM�� = cos2��ah

2d̄
� = cos2��bh

2d̄
� . �11�

A distinctive property of the aperiodic structures based on
QWs is the dielectric response resonant at the exciton fre-
quency �0. It is most brightly manifested in optical spectra
of the structures tuned to the Bragg resonance at a particular
diffraction vector. The resonant Bragg condition8 for both the
Fibonacci and Thue-Morse structures is formulated as

�0nb

c
=

G

2
, �12�

where G stands for the diffraction vector Ghh� in the Fi-
bonacci case and for Gh in the Thue-Morse case, see Eqs. �5�
and �10�, respectively. Of course, one can impose a similar
condition for nonsingular wave vectors contributing to the
structure factor of the Thue-Morse sequence. Since in this
case the value f�q ,N� decreases with increasing N the corre-
sponding system is far from being an efficient exciton-
polaritonic structure. This is the reason why we do not
consider here, e.g., the period-doubling sequence
ABAAABAB. . . �Ref. 38� determined by the rule A
→AB , B→AA, which has no Bragg peaks except for the
trivial one at q=0.

For the sake of completeness, we also analyze a slightly
disordered structure with the long-range order maintained
and the QW positions defined by

zm = md̄ + 
zm, �13�

where the deviation 
zm is randomly distributed and defined
by the vanishing average, �
zm=0, and the dispersion �z

2

= ��
zm�2. The structure factor f�q�=limN→� f�q ,N� of such
a lattice averaged over the disorder realizations has the form

�f�q� = �
h


2q,Gh
e−�q�z�

2/2, Gh = 2�h/d̄ . �14�

The dispersion of f�q ,N� tends to zero with N→�, and Eq.
�14� provides a good estimation of the structure factor for
any fixed disorder realization whenever N�10. The long-
ranged correlations of QW positions are preserved by Eq.
�13�, and the Bragg diffraction is possible with the same
diffraction vectors as in the periodic lattice. However, the
structure-factor coefficients drop drastically with the growth
of �z. The exponential factor in Eq. �14� is equivalent to the
Debye-Waller factor caused by the thermal motion of atoms

in a crystalline lattice.39 Since the geometry of MQW struc-
tures under study is now described and the resonant Bragg
condition is imposed we proceed to the optical reflection
spectra.

III. TWO REGIMES IN OPTICAL REFLECTION FROM
APERIODIC BRAGG STRUCTURES

Two different regimes have been revealed in optical re-
flection from resonant Bragg structures based on periodic
MQWs.16,40 For small enough numbers of QWs, N
�	�0 /�0 �super-radiant regime�, the optical reflectivity is
described by a Lorentzian with the maximum value
�N�0 / �N�0+���2 and the halfwidth N�0+�. For a large
number of wells, N�	�0 /�0 �photonic crystal regime�, the
reflection coefficient is close to unity within the exciton-
polariton forbidden gap and exhibits an oscillatory behavior
outside the gap. The calculations presented below demon-
strate that the mentioned two regimes are peculiar not only to
the periodic MQWs but do exist in all deterministic aperiodic
structures tuned to the Bragg resonance.

A. Super-radiant regime

The numerical calculation of reflection spectra is carried
out using the standard transfer matrix technique �see Ref. 41
�and also Sec. V� for some details�. Figure 1 presents the
reflectivity RN��� calculated for the light normally incident
from the left half-space z�0 upon four different 50 well
structures. All the four, namely, the Fibonacci, Thue-Morse,
periodic and distorted periodic structures, are tuned to satisfy
the Bragg resonant condition �12�, which can be rewritten as

��0�=2d̄, where ���=2�c / ��nb�. This means that, for the
Fibonacci structure, the value G of diffraction vector in Eq.
�12� is set to Ghh� with h=1,h�=0 and, therefore, for the four

structures G=2� / d̄ and they have the same QW number N,

approximately the same lengths Nd̄ and are different only by
the details of QW arrangement. Their optical properties can
then be conveniently compared.

One can see from Fig. 1 that condition �12� leads to high
reflectivity of not only the periodic and quasicrystalline Fi-
bonacci chains8 but also the Thue-Morse and slightly disor-
dered periodic structures. In the region ��−�0��20�0, far
enough from the exciton resonance frequency, the four spec-
tra have similar Lorentzian wings with the halfwidth of the
order of N�0 indicating the existence of a super-radiant
exciton-polariton mode. The magnitude of the wings is gov-
erned by a modulus of the structure-factor coefficient, �fG�.
For the chosen structures this value runs from �fG�=1 �peri-
odic structure� and �fG�=0.95 �distorted periodic� to �fG�
=0.70 �Fibonacci� and �fG�=0.65 �Thue-Morse�. The spectral
wings in Fig. 1 decline monotonously with decreasing �fG�.
In addition it should be mentioned that, for the Fibonacci
QW structure tuned to Ghh� with h=1,h�=1 and analyzed in
Ref. 8, the structure-factor coefficient is �fG��0.9 and the
spectral wings in reflectivity are raised as compared with
those for the Fibonacci structure tuned to G1,0.

In the frequency region around �0 the reflection spectra
from the nonperiodic structures show wide dips where the
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reflection coefficient oscillates with the period of oscillations
decreasing as � approaches �0. As shown below, see also
Ref. 8, the spectral dip naturally appears for a multilayered
deterministic system tuned to a Bragg diffraction vector with
the structure-factor coefficient fG smaller than unity, and it
widens as the value of 1− �fG� increases. Thus, Fig. 1�a� dem-
onstrates that in the wide spectral range the reflectivity spec-
trum of the Bragg MQW chain depends only on three geo-
metrical parameters: QW number N, Bragg diffraction vector
G and structure factor fG.

Further geometry-related peculiar spectral properties are
revealed in the narrow resonance region around �0 ranged
over few values of �0 �see Figs. 1�b�–1�d��. For small non-
radiative damping rates � �lying beyond experimentally
available values�, an intricate fine structure of optical spectra
is developed in this region. All the considered aperiodic
structures possess a narrow middle stop band embracing the
exciton resonance �0. In particular, for the Fibonacci QW
structure this stop band is located between �0−0.4�0 and
�0+0.9�0. The spectral properties in the frequency range
��−�0���0 for ���0 are discussed in Sec. V in more de-
tails.

In realistic semiconductor QWs the nonradiative decay
rate is larger than or comparable to �0, and the majority of
spectral fine-structure features are smoothed.9 The influence
of the nonradiative damping on the reflectivity from the Fi-

bonacci MQWs is illustrated in Fig. 2. Thin curve in the
upper panel is the same as that in Fig. 1 and calculated for
�=0.1�0 while the thick curve corresponds to a more realis-
tic value of �=2�0. One can trace the smoothing of sharp
spectral features with increasing �. However, some of these
features may still be resolved by means of the differential
spectroscopy widely used in the study of bulk crystals and
low-dimensional structures.42 Panels �b� and �c� of Fig. 3
present the first and second derivatives R����
�R��� /��
and R����, respectively. The differential spectra allow one to
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FIG. 1. �Color online� Reflection spectra calculated for four QW
structures, each containing N=50 wells and tuned to the resonant

Bragg condition 2d̄=��0�: periodic structure, with a
b
 d̄
�dashed�; Fibonacci chain, with a /b=� �solid curve�; Thue-Morse
sequence with a /b=3 /2 �dotted�; and weakly disordered periodic
MQWs with �z=0 /20 �dashed-and-dotted�. Note the break on the
abscissa axis in panel �a� around �=�0. Panels �b�–�d� show the
same spectra in larger scale of the variable ��−�0� /�0. Calculated
for ��0=50 �eV, ��0=1.533 eV, and �=0.1�0.

FIG. 2. �Color online� Conventional and differential reflection
spectra calculated for Fibonacci QW structures containing N=50
wells. Panel �a� shows reflection spectrum R��� calculated for �
=0.1�0 �thin curve� and �=2�0 �thick curve�. Panels �b� and �c�
demonstrate the first- and second-order differential spectra R����
and R���� in arbitrary units for �=2�0. Other parameters are the
same as in Fig. 1.
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FIG. 3. �Color online� Reflection spectra calculated for a Fi-
bonacci QW structure containing 1000 wells. The parameters used
are the same as those in Fig. 1 except for the nonradiative decay
which now is �=0.2�0. Upper and lower panels correspond, respec-
tively, to the exact calculation and calculation in the two-wave ap-
proximation. Vertical arrow at �=�0 in panel �a� indicates the nar-
row reflectivity stop band, which cannot be described by the two-
wave approximation.
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enhance the spectral peculiarities poorly resolved in the con-
ventional spectrum of Fig. 2�a�.

B. Photonic-quasicrystal regime

The super-radiant regime holds up to N�100 and is fol-
lowed by a saturation with the further increase in the number
of QWs.40 In this subsection we study very long QW chains
with N�	�0 /�0. The calculations for N=1000 are presented
in Fig. 3 for Fibonacci MQWs and Fig. 4 for Thue-Morse
MQWs. Figure 3 allows a clear interpretation of the spectral
properties of excitonic polaritons. The Lorentzian spectrum
with a dip in the middle, typical for small values of N, has
evolved for N=1000 into the double silk hat profile, indicat-
ing the presence of two polaritonic stopbands �cf. Figs. 1�a�
and 3�. These two symmetric stopbands8 are standing out
between numerous sharp maxima and minima. Figure 3�b�
shows the spectrum calculated in the two-wave approxima-
tion taking into account only three terms in sum �4�, namely,
the terms with 2q= �G1,0 and 2q=0 �see Sec. IV for de-
tails�. Comparing Figs. 3�a� and 3�b� we conclude that a lot
of spectral features are reproduced as the interference fringes
in the approximated spectrum. However, this approximation
lacks an adequate description of the reflection spectrum
around the exciton resonance frequency. The middle stop
band at �=�0 found in Fig. 1�b� reveals itself also in Fig.
3�a� where it is indicated by a vertical arrow.

Thin solid curve in Fig. 4 illustrates the exact reflectivity
calculation for the Thue-Morse structure with N=1000.
Thick solid curve is calculated in the two-wave approxima-
tion in the limit N→� so that all the interference fringes are
smoothed due to the finite value of �→+0. We have checked
for the Thue-Morse sequence that, for N=1000, the two-
wave approximation works well outside the narrow interval
��−�0���0. The fine features around �0 are again beyond
the scope of the two-wave approximation. The spectrum for

1000 periodic QWs, dotted curve in Fig. 4, is presented for
comparison in order to emphasize similarities and differ-
ences between the optical spectra of periodic and aperiodic
systems under consideration.

Figures 1–4 form a computational database for the physi-
cal interpretation of the reflection spectral shapes. This can
be done in terms of the two-wave approximation ���−�0�
��0, see Sec. IV� and the scaling invariance ���−�0���0,
see Sec. V�.

IV. OPTICAL SPECTRA IN THE TWO-WAVE
APPROXIMATION

In this section we apply the two-wave approximation to
derive the exciton-polariton dispersion and the reflectivity
spectra of the aperiodic resonant Bragg MQW structures.
The derivation is performed for the particular case of a
canonic Fibonacci chain but the results can be straightfor-
wardly generalized to noncanonical quasicrystal sequences
and other deterministic aperiodic multilayered structures.

The electric field of the light wave propagating in the
MQW structure satisfies the following wave equation41

�−
d2

dz2 − q2�E�z� =
2q�0

�0 − � − i�
�
m


�z − zm�E�zm� .

�15�

Assuming the resonant Fibonacci MQWs to contain a suffi-
ciently large number N of wells we replace the structure
factor f�q ,N� by its limit f�q� given by Eq. �4�. This allows
one to approximate solutions of Eq. �15� as a superposition
of the “Bloch-like” waves

EK�z� = �
h,h�

ei�K−Ghh��zEK−Ghh�
. �16�

As distinct from the true Bloch functions in a periodic sys-
tem, here the countable set of vectors Ghh� is enumerated by
not one but two integer numbers, h and h�, see Eq. �5�.
Substituting EK�z� into Eq. �15�, multiplying each term by
exp�−i�K−Ghh��z� with particular h ,h� and integrating over z
we obtain

�q2 − �K − Ghh��
2�EK−Ghh�

+ 2q��
gg�

fg−h,g�−h�
� EK−Ggg�

= 0,

�17�

where

���� =
�0

d̄��0 − � − i��
. �18�

Note that, throughout this paper, we focus on a frequency
region ��−�0���0 around the exciton resonance.

In accordance with Eq. �12� we consider the Fibonacci
QW structure tuned to the Bragg resonance

�0

c
nb 
 q0 =

Gh,h�

2
. �19�

In the two-wave approximation, only two space harmonics K
and K�=K−Ghh�=K−2q0 are taken into account in superpo-
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FIG. 4. �Color online� Reflection spectra calculated for Thue-
Morse and periodic QW structures. Thin solid curve corresponds to
the exact calculation for N=1000 Thue-Morse QWs, thick solid
curve is calculated in the two-wave approximation for N→�. Dot-
ted curve represents the spectrum for periodic MQWs with N
=1000 wells and the period d=��0� /2. The parameters used are
the same as those in Fig. 3.
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sition �16�. A necessary but not sufficient condition for va-
lidity of this approximation is the inequality

�q0 − K� � q0. �20�

Then infinite set �17� is reduced to a system of two coupled
equations

�q − K + ��EK + �fhh�
� EK� = 0,

�fhh�EK + �q + K − 2q0 + ��EK� = 0. �21�

The two eigenvalues K corresponding to the frequency � are
given by

K��� = q0 � Q,Q = 	�� + q − q0�2 − �2�fhh��
2. �22�

Criterion �20� is then rewritten in the form

max���0 − ��,�� � �0

	1 − �fhh��
2

h + h�/�
. �23�

At fhh�→1 this dispersion equation reduces to that for the
periodic resonant Bragg MQWs �Ref. 16�

Q = q0	�� − �0

�0
�2

− �2 � − �0

� − �0 + i�
,

where

� =	2�0�0

�
.

The edges, �out
� and �in

�, of two symmetrical band gaps in the
Fibonacci QW structure are obtained from Eq. �22� by set-
ting K���=q0 or, equivalently, Q=0. The result reads as8

�out
� = �0 � �	 1 + �fhh��

2�h + h�/��
,

�in
� = �0 � �	 1 − �fhh��

2�h + h�/��
. �24�

As shown in the Appendix, for the exciton-polariton waves
at the band-gap edges located at the point K=q0, an admix-
ture of other space harmonics has no remarkable influence
and these edges are well defined for the resonant QW Fi-
bonacci chains. For any frequency lying inside the interval
between the edges �in

− and �in
+ , the two-wave approximation

gives two linearly independent solutions K���=q0�Q with
nonzero Q. An exciton-polariton wave induced by the initial
incoming light wave is a superposition of these two Bloch-
like solutions. However, now, unlike the periodic case, the
Bloch-like waves are not independent eigensolutions and can
be coupled by the diffraction wave vector Ggg� satisfying the
condition 2Q=Ggg�. If the corresponding structure-factor co-
efficient fgg� is remarkable one should include into consider-
ation mixing of the waves K���, which complicates this com-
paratively simple description of exciton polaritons. In the
approximate approach we will ignore the diffraction-induced
mixing between the waves K��� and check the validity of this
description by comparing the exact and two-wave calcula-
tions.

In order to derive an analytical expression for the reflec-
tion coefficient from an N-well chain sandwiched between
the semi-infinite barriers �material B� we write the field in
the three regions, the left barrier, the MQWs and the right
barrier, as follows

E�z� = �
eiqz + rNe−iqz �z � 0� ,

E+eiQz�eiq0z + �+e−iq0z�+

E−e−iQz�eiq0z + �−e−iq0z� �0 � z � Nd̄� ,

tNeiq�z−Nd̄� �Nd̄ � z� .
�

�25�

Here rN and tN are the amplitude reflection and transmission
coefficients, E� are the amplitudes of the “Bloch-like” solu-
tions, and

�� = −
�fhh�

q − q0 � Q + �
.

Values of rN , tN ,E+ ,E− are related by imposing the boundary
conditions which are continuity of the electric field E�z� and
its first derivative dE�z� /dz at the points z1=0 and zN. If the
number of wells N coincides with N=Fj +1, where Fj is one
of the Fibonacci numbers, then the product Ghh�zN differs
from an integer multiple of 2� by a negligibly small value,

N=−Ghh�s�1−�� j−1�−2. In this case the phase factor
exp�iGhh�zN� can be replaced by unity and the straightfor-
ward derivation results in surprisingly simple expressions for
the reflection coefficient,

rN =
�fhh�

q0 − q − � − iQ cot�QNd̄�
, �26�

and for the transmission coefficient, tN=−irNQ /
��fhh� sin�QNd̄��.

Numerical calculation demonstrates that in region �23� the
two-wave approximation is valid even for the Fibonacci
structures with N�Fj +1 provided that N�20 and the me-
soscopic effects are reduced. Moreover, Eq. �26� for the re-
flection coefficient can be applied to other deterministic ape-
riodic systems including the Thue-Morse and weakly
disordered periodic structures. It suffices for the structure to
be characterized by a single value of the structure factor at
particular vector which can play the role of the Bragg dif-
fraction vector. In bulk crystals, where fhh�
1, the similar
approximation describes the nuclear resonant scattering of 	
rays.43 It is worth mentioning that the present two-wave ap-
proach is not restricted to 1D systems and can be extended
for the analysis of resonant aperiodic lattices of higher di-
mensions.

The two-wave approximation allows for the dielectric
contrast, i.e., the difference between the dielectric constant of
the barrier, nb

2, and the background dielectric constant of the
QW, na

2. In a structure with na�nb the stop band exists even
when neglecting the exciton effect, �0=0. The excitonic
resonance leads to the splitting of this single stop band into
two ones. In the periodic case the highest reflectivity is
reached when the two stop bands touch each other and form
a single exciton-polariton gap. This is the effective Bragg
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condition for the periodic structure with the dielectric
contrast.21 In the Fibonacci case when �fhh���1 the stop
bands never touch each other and the Bragg condition means
that the sum of their widths reaches a maximum. For the
realistic case of a small contrast, �na−nb��na ,nb, this condi-
tion is equivalent to the tuning of the exciton resonance fre-
quency �0 to one of the edges of the stop band found at
�0=0, similarly to the corresponding condition for the peri-
odic structures.21,44 Note that the reflectivity spectrum taken
from the Bragg MQW structure with the dielectric contrast is
always asymmetric.

For periodic resonant Bragg MQWs, in the super-radiant
regime N�	�0 /�0, Eq. �26� is readily transformed to the
well-known result,11

rN��� =
iN�0

�0 − � − i�N�0 + ��
. �27�

The pole at �=�0− i�N�0+�� is the eigenfrequency of the
super-radiant mode. In general, the eigenfrequencies ��l� of a
MQW structure are represented by zeros of the denominator
in Eq. �26�. Since the structure is open the eigenfrequencies
are complex even in the absence of nonradiative damping,
�=0. Values of ��l� lying in the region

�� − �0� �
�	1 − �fhh��
	h + h�/�

�28�

but outside narrow interval �23� can easily be found by tak-
ing into account that, in this region, the difference q0−q in
Eqs. �22� and �26� can be neglected as compared with � so
that one has Q=�	1− �fhh��

2 and

��l� = �0 − i� − iN�0

	1 − �fhh��
2

arctanh�	1 − �fhh��
2� + i�l

,

l = 0, � 1, � 2. . . �29�

Equation �29� determines at l=0 the frequency of the super-
radiant mode. In the particular case 1− �fhh��

2�1, this fre-
quency is given by

��0� = �0 − iN�0�2

3
+

�fhh��
2

3
� . �30�

Figure 5 shows the eigenfrequencies of a 56-QW Fibonacci
structure calculated exactly �filled symbols� and from Eq.
�29� �empty symbols�. The exact calculation is performed
using the following system of coupled equation for excitonic
polarization Pm in the quantum wells41

��0 − � − i��Pm − i�0 �
m�=1

N

eiq�zm−zm� �Pm� = 0, m = 1 . . . N .

�31�

One can see from Fig. 5 that the two-wave approximation
excellently describes the super-radiant mode as well as some
of the subradiant modes lying far from �0 on the complex
plane. The approximation breaks in the region close to �0

where more sophisticated analysis is required, as presented
in the next section.

V. SCALING AND SELF-SIMILARITY IN THE OPTICAL
SPECTRA

A. Trace map technique for Fibonacci and Thue-Morse
quantum well structures

In this section we concentrate on the narrow frequency
region ��−�0���0. The standard transfer matrix method,41

widely used for the numerical calculation of various 1D sys-
tems, becomes especially important in deterministic aperi-
odic structures, where it presents a solid base for the inter-
pretation of the obtained results. The reason is that the
substitution rules �Eq. �1��, defining the QW arrangement,
directly lead to closed recursive relations between the ele-
ments of the transfer matrices. Analysis of these recurrence
relations provides all the essential information about the
spectral properties of MQWs.

In the following we use the notation F j for the Fibonacci
chain containing N=Fj QWs starting from the trivial chain
F1 that consists of one segment A. Similarly, TM j is the
Thue-Morse sequence with N=2 j QWs starting from TM0
=A. The transfer matrix Mj through the whole structure F j
or TM j is given by a product of the matrices MQW, MA, MB
of transfer through a QW and a barrier of length a or b,
respectively, with the order established by chain definition
�1�. In the basis of electric field E�z� and its derivative
−q−1dE�z� /dz the transfer matrices are as follows:41

MQW = � 1 0

2S 1
�, S =

�0

�0 − � − i�
, �32�

and45

-10 -5 0 5 10
-45

-40
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(ω

−ω
0
)/Γ

0

Re (ω−ω
0
)/Γ

0

FIG. 5. �Color online� Complex eigenfrequencies of exciton po-
laritons in Fibonacci 56-QW structure calculated exactly �filled
symbols� and in the two-wave approximation �empty symbols�.
Note the break in the ordinate axis. Vertical arrows indicate the
edges of inner stop band. Calculated for �=0 and other parameters
same as in Fig. 1.
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MD = �cos qd − sin qd

sin qd cos qd
�, D = A,B;d = a,b . �33�

We will here restrict ourselves to the limit of zero nonradia-
tive decay, �=0, in which case the transfer matrices are real.
The transmission and reflection spectra, Tj��� and Rj���, are
given by45

Tj��� = 1 − Rj��� =
1

xj
2��� + yj

2���
. �34�

Here the quantities xj and yj stand for the half-trace �Mj,11
+Mj,22� /2 and half-antitrace �Mj,21−Mj,12� /2 of the matrix
Mj, respectively.

In order to reveal the behavior of exciton polaritons in
aperiodic MQWs it is instructive to calculate the polariton
dispersion in the approximants23 of the aperiodic chains con-
taining the periodically repeating sequences F j or TM j. In
such periodic systems the polariton band structure consists of
allowed minibands and forbidden gaps. The gaps are found
from the condition41

�xj���� � 1. �35�

To proceed to the analysis of the pattern of allowed and
forbidden bands we note that the half-traces xj of the substi-
tution sequences satisfy closed recurrence relations, also
termed as trace maps.46 For the Fibonacci and Thue-Morse
chains, the trace maps read

xj+1 = 2xjxj−1 − xj−2 �Fibonacci� , �36a�

xj+1 = 4xj−1
2 �xj − 1� + 1 �Thue-Morse� . �36b�

Consequently, the polariton energy spectrum is determined
by the general properties of nonlinear transformations �36a�
and �36b� and the initial conditions specific for the QW
transfer matrices �Eq. �32��. The trace maps are effective for
studies of the spectral properties of deterministic aperiodic
structures.28,47

B. Scaling of band structure and transmission spectra in
Fibonacci structures

We will now analyze the band structure and the transmis-
sion spectra in Fibonacci QW structures. For the Fibonacci
lattices trace map �36a� possesses an invariant24

I = xj
2 + xj+1

2 + xj+2
2 − 2xjxj+1xj+2 − 1.

In the QW structure this equation can be reduced to

I��� = S2���sin2�qb�� − 1�� . �37�

The resonant behavior of invariant I��� as a function of fre-
quency indicates that the band structure for Fibonacci QW
chains may be very complex in the region ��−�0���0. The
band calculations are presented in Fig. 6�a�, where the black
stripes and horizontal lines show, respectively, the forbidden
and allowed bands for different values of the structure order
j ranging from j=1 to j=13. Figures 6�b�–6�d� represent this
band sequence for j=11 and j=13 in different frequency
scales. Panel �a� demonstrates that two broad band gaps are

already present for 21 QWs �j=8�. With increasing j their
edges very quickly converge to the analytical values �Eq.
�24��� shown by the gray rectangles in Fig. 6�a�. A narrow
permanent middle band gap at −0.4�0��−�0�0.9�0 is
well resolved in the frequency range of Fig. 6�b�.

The other forbidden bands depicted in Fig. 6 can be inter-
preted in terms of two formation mechanisms. The first
mechanism is related to the two-wave approximation. In this
approximation the half-trace of the transfer matrix xj reaches
minimum �−1� or maximum �+1� values at particular fre-
quencies �s where the reflectivity rN, given by Eq. �26�,
vanishes. Using Eq. �26� one can check that at these frequen-

cies the product QNd̄ is an integer number of �. Let xj
�2-wave�

be the half-trace calculated in the two-wave approximation.
In the vicinity of �s its frequency dependence can be de-
scribed by xj

�2-wave����=ns�1−us��−�s�2�, where ns= �1
and us is a positive coefficient. Near �s the exact function
xj���
Tr�Mj� /2 differs from xj

�2-wave���� by the correction

x��� which can be approximated by ns�cs+vs��−�s��
where cs ,vs are additional constants. As a result the behavior
of the half-trace can be presented in the form

x��� = ns�1 + cs +
vs

2

4us
− us�� − �s −

vs

2us
�2� .

If cs+ �vs
2 /4us� is positive then the periodic system has a gap

at �s�=�s+ �vs /2us�.
The second mechanism of gap formation is related to lo-

calized exciton-polariton states rather than to the Fabry-Perot
interference and can be treated in terms of self-similarity
effects. Particularly, in the frequency range ��−�0���0 the
number of stop bands increases while their widths tend to
zero as N→�. As a result, the sequence of the allowed and
forbidden bands becomes quite intricate �see Figs. 6�b�–6�d��
and locally resembles the Cantor set.24 The most striking
result in Fig. 6�b� is similarity of the band structure of the
approximants with j=11 and j=13. On the other hand, the
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FIG. 6. �Color online� �a�. Exciton-polariton allowed �thin lines�
and forbidden �thick stripes� bands in periodically repeated Fi-
bonacci sequences of the order j=1. . .13. �b� Bands for j=11 ad
j=13 in the spectral range around the frequency �=�0. �c� and �d�
Bands for j=11 and j=13, respectively, in a large scales near the
frequency �=�0+0.935�0 indicated by the vertical line. Calculated
for �=0 and other parameters same as in Fig. 1.
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spectrum for j=13 has a lot of narrow band gaps not re-
solved in the scale of Fig. 6�b�. Figures 6�c� and 6�d� present
the same spectra in larger scales near the right edge of the
middle band gap, with the scale for j=13 being +�8 times
larger than that for j=13. Matching the band-gap positions
we prove the existence of the spectral scaling in the Fi-
bonacci QW structures. The scaling index + specifies the
ratio of the widths of spectral features of the structures with
the order differing by two. The scaling properties hold not
only for the band positions but for the whole curves xj���, as
Fig. 7 demonstrates for j=11, 13, and 15. One can see that
the curves plotted on the proper scales repeat each other
almost exactly.

Now we turn from the exciton-polariton band structure to
the transmission coefficients Tj��� and the complex eigen-
frequencies �Eq. �31��. The spectra Tj��� for the resonant
Fibonacci structures are shown in Fig. 8 for j=11 �N=89
QWs� and j=13 �N=234 QWs� in the frequency region ad-
jacent to the right edge of the middle band gap. The real
parts of the complex eigenfrequencies are indicated by the
vertical lines. The abscissa scales in Figs. 8�a� and 8�c� are
the same as in Figs. 6�d� and 6�c�. Examining Fig. 8 we
conclude, that the scaling properties revealed by Figs. 6 and
7 are also manifested in the optical spectra. Indeed, compar-
ing Figs. 8�a� and 8�b� we find that the general shape of the

spectra remains similar although more details appear when N
grows. On the other hand, the relative distances between the
transmission peaks for j=13 in the large scale agree with
those for j=11 in a smaller scale �cf. Fig. 8�a� and 8�c��. The
positions of the real parts of complex eigenfrequencies cor-
respond to the peaks in the transmission spectra and exhibit
the same scaling behavior. Such behavior is also demon-
strated at the left edge of the middle band gap �−�0�
−0.37�0, it is characterized by the scaling index −�16.

The self-similarity of band structure of Fibonacci se-
quences with the orders j differing by 2 can be related to the
so-called “band-edge” cycle of trace map �36a�.48 This can
be done by the following consideration. If the half-traces xj
for three successive orders j= j0 , j0+1 , j0+2 are inter-related
by

xj0+1 = −
xj0

2xj0
− 1

, xj0+2 = − xj0
�38�

then according to the recurrent equation �36a� the values of
xj for j� j0 form a periodic sequence

x�,−
x�

2x� − 1
,− x�,

x�

2x� − 1
,− x�,−

x�

2x� − 1
,x�, . . . �39�

where x�=xj0
. Although sequence �39� repeats itself only af-

ter six iterations, the length of the cycle for the absolute
value of the trace is 2.

Considering xj as functions of the frequency � we intro-
duce solutions ��a��j0� and ��b��j0� of the first and second
equations �38�. The numerical calculation shows that, for
each j0, in the vicinity of �0 there exist two pairs of solu-
tions, ��

�a��j0�, and ��
�b��j0�. Moreover, values of �+

�a��j0� and
�+

�b��j0� or �−
�a��j0� and �−

�b��j0� merge with increasing j0, and

FIG. 7. �Color online� Trace scaling for the Fibonacci structures.
The panels �a�–�c� show the half-trace xj��� for j=11,13,15, re-
spectively. The filled ribbons indicate the regions of polariton band
gaps, where �xj�����1. Calculated for �=0 and other parameters
same as in Fig. 1.
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FIG. 8. �Color online� Transmission spectra of the Fibonacci
quantum-well sequences of the order j=11 �a� and j=13 �b� and �c�,
containing 89 and 233 QWs, respectively. Vertical lines indicate the
real parts of complex eigenfrequencies of the structures. Calculated
for �=0 and other parameters same as in Fig. 1.
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one can introduce the asymptotic frequencies ��
� =��

�a��j0
→��=��

�b��j0→��, with the values �+
� ��0+0.94�0 and

�−
� ��0−0.37�0.

Our analysis performed for Fibonacci structures with dif-
ferent pair values of �h ,h�� shows that they also demonstrate
analogous scaling behavior in the vicinity of �0. The dis-
tance ��+

� −�−
�� between the scaling frequencies decreases

with the growth of the barrier thicknesses. The scaling indi-
ces increase when the middle band gap becomes narrower.
We have established that there exists the following equation
relating the scaling indices and the frequencies ��

� :

� � �1 + �2
	I���

� � 
 �1 +
�2�0

��0 − ��
� �

�sin�q��0�b�� − 1��� .

�40�

The coefficients �1 and �2 are found to be close to 3 and 4,
respectively, and independent of the structure parameters.
Since the value of ��+

� −�0� /�0�0.94 exceeds ��−
� −�0� /�0

�0.37 the scaling coefficient +�8 is smaller than −�16.
We have also analyzed the spatial structure of the exci-

tonic polarization Pm of the eigenstates satisfying Eq. �31�.
In particular, this distribution is characterized by the partici-
pation ratio p=�m=1

N �Pm�4 / ��m=1
N �Pm�2�2, where the sum runs

over QW-lattice sites.49 The parameter p is a measure of the
state localization-delocalization: for a completely delocalized
state p�1 /N, whereas p�1 for a state tied to a single site.

In the periodic Bragg structure with d̄=��0� /2, the super-
radiant mode is described by the eigenvector Pm= �−1�mP0
and the participation ratio p=1 /N. In the Fibonacci QW
chain the participation ratio remains small for the super-
radiant mode as well as for the subradiant modes described
by two-wave approximation �29�. On the other hand, there
exist localized states with large values of p as well as inter-
mediate states. The eigenstates with strongly localized char-
acter belong to the region ��−�0� covering few �0. The ex-
citonic polarization Pm of such states is concentrated on a
small fraction of the QW chain and has a complex self-
similar structure.48

Up to now we have limited ourselves only to the scaling
features in the region ��−�0���0. At very high values of
N�1000 the optical spectra become intricate even at ��
−�0���0. However, in the stopband regions ��out

− ,�in
− � and

��in
+ ,�out

+ � the reflection coefficient RN���= �rN����2 remains
close to unity. The spectral pattern within the interval
��in

− ,�in
+ � strongly depends on values of � and N. For any

nonradiative damping rate � there exists a finite value of the
number of wells, N���, which separates the structures into
two categories. For N�N���, the reflection spectrum is in-
dependent of N, RN�� ;���R��� ;��, and determined by the
exciton-polaritons localized within the area 0�z�zN��� and
sensitive to the initial light. For QW structures with N
�N���, the light wave reaches the back edge of the struc-
ture, reflects from this edge, propagates back and participates
in the Fabry-Perot interference resulting in the oscillating
reflectivity. This regime, N�N���, is well described by the
two-wave approximation except for the narrow region near
the exciton resonance frequency where condition �23� is not
satisfied. With decreasing � the critical number N��� infi-

nitely increases while the spectrum R��� ;�� continuously
varies as �→+0 and shows no saturation behavior.

C. Transmission spectra of the Thue-Morse quantum well
structures

We now turn to the Thue-Morse structures. The polariton
band-structure calculations performed for this system lead to
qualitatively similar conclusions: two-wave band gaps are
already formed for small j, a middle narrow band gap is
always present, and a complicated sequence of allowed and
forbidden bands arises around �0. However, the Thue-Morse
structures have a very interesting specific properties, most
brightly manifested in their transmission spectra.

The transmission spectra are presented in Fig. 9 for dif-
ferent orders j changing from 4�N=16 QWs� to 7�N=128�.
The spectrum has a complex structure with narrow peaks
even for N=16 �see Fig. 9�a��. Figures 9�b�–9�d� show evo-
lution of the spectra with increasing the number of QWs.
Trace map �36b� alone is not sufficient to obtain transmission
spectra. Therefore, to analyze the spectra we use the standard
properties of trace map �36b� and the antitrace maps29

yj+1 = 2xj−1��2xj − 1�yj−1 + ỹ j−1� ,

ỹ j+1 = 2xj−1��2xj − 1�ỹ j−1 + yj−1� . �41�

Here the half-antitrace ỹ j corresponds to the structure TM˜

j
obtained from TM j by the barrier interchange A↔B, e.g.,

TM2=ABBA and TM˜

2=BAAB. Contrary to the Fibonacci
case, trace map �36b� for the Thue-Morse structures has no
cycles of type �39�. Instead of such cycles, Eqs. �36b� and
�41� have the following property:50
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FIG. 9. �Color online� Fine structure of the transmission spectra
calculated for Thue-Morse quantum-well sequences of order j
=4,5 ,6 ,7 �N=16. . .128�. Calculated for �=0 and other parameters
the same as in Fig. 1.
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If xj−2��� = 0 then�xj��� = xj+1��� = . . . = 1,

yj��� = yj+1��� = . . . = 0.
� �42�

As a consequence, the structure becomes transparent at this
particular frequency: Tj���=Tj+1���= . . . =1. The positions
of the spectral features follow then from Eq. �42�. For ex-
ample, the edges of the inner band gap for the Thue-Morse
structure, �L=�0−0.83�0 and �R=�0+0.47�0, can be found
from the equations x1��L�=0 and x2��R�=0, respectively.

Whenever the half-trace xj−2��� vanishes at some fre-
quency �=�1 and therefore, xj��1�=1, there exist two
neighboring frequencies, �2��1 and �3��1, such as
xj��2,3�=0. As a consequence, xj+2��2,3�=1 and the trans-
mission coefficient for the structure TM j+2 at these frequen-
cies reaches unity. Thus, the number of transmission peaks
increases with the growth of the structure order: each unitary
peak in the spectrum of the structure TM j �i� persists in the
spectra of the structures TM j+1 ,TM j+2 , . . . of higher orders
and �ii� leads to appearance of two more adjacent peaks for
the structure TM j+2. An example of such “tree” of trifuca-
tions is indicated in Figs. 9�b�–9�e� by dashed lines. The
single transmission peak of the structure TM4�N=16� at �
��0+2.1�0 has generated the two peaks at ���0+1.8�0
and ���0+2.6�0 for the structure TM6�N=64� �cf. Figs.
9�b� and 9�d��. The characteristic widths of the spectral fea-
tures tend to zero proportional to a power Nj

−�=2−j� of the
structure length, where � is a frequency-dependent positive
index. Transmission spectra can also have nonunity maxima
�see Fig. 9�e��. These peaks do not correspond to any special
values of xj and yj and their positions depend on j. The
spatial distribution of the electric field on the frequencies
with unitary transmission has a so-called “latticelike” shape,
specific for the Thue-Morse structures.51

The spectra presented in Fig. 9 are calculated for the
Bragg structure with q��0��a+b�=2�. An interesting prop-
erty of the Thue-Morse lattices, satisfying the Bragg condi-
tion q��0��a+b�=� ,2�. . ., is the mirror symmetry between

the transmission spectra T��� and T̃���, of the structures

TM j and TM˜

j, holding in the region ��−�0��	�0�0 in
which case q=q��� in Eq. �33� can be approximated by
q��0�. The spectra are symmetrical with respect to �=�0:

T̃���=T�2�0−��.

VI. CONCLUSIONS

In this work we have investigated, from a theoretical point
of view, exciton-polaritons in deterministic aperiodic MQW
structures in order to describe the role played by long-range
order in the optical coupling of different elements in the QW
chain. The approach used, based on the two-wave approxi-
mation, has been extended to derive both the dispersion
equation and analytical formulas for the reflectance and
transmittance spectra of MQW sequences showing two dif-
ferent values of the interwell distances, a and b. In particular,
we have considered the Fibonacci and the Thue-Morse QW
chains as representatives of a quasicrystal and of a system
with a singular continuous Fourier spectrum. For moderate
exciton nonradiative damping rates � available at present

time, the analytical approximation successfully describes the
pattern of the optical spectra including the pair of stop bands
and interference fringes between them. The only geometrical
parameter characterizing the optical spectra of the N-QW
system is the value of structure factor fG at the resonant
Bragg diffraction vector G. The two-wave approximation
stops being valid in a spectral range ��−�0���0 near the
exciton resonant frequency �0, where the optical spectra
strongly depend on the particular geometrical details of the
QW arrangement.

Our results show that in the Fibonacci QW chains with
small values of the exciton nonradiative damping rate, �
��0, the transmittance spectra and polariton band structure
reveal, at two edges of the narrow inner band gap, a compli-
cated and rich structure demonstrating scaling invariance and
self-similarity. It has been shown that this structure can be
related to the “band-edge” cycle of the trace map; the fine
structure of optical spectra in the Thue-Morse MQWs can be
interpreted in terms of zero reflection frequencies �or fre-
quencies of unity transmittance�.

In the wide spectral region �in
− ����in

+ between the in-
ner edges of the wide stop bands but outside the narrow
region ��−�0���0, the character of exciton polariton states
is governed by the value of nonradiative decay �: with de-
creasing � a transition occurs from Bloch-like to localized
polariton states, with modes closer to �0 becoming localized
first. The reflection and transmission spectral patterns are
determined by the interplay of three distances: the structure

thickness L�Nd̄, the polariton absorption length Labs
= �2�Im Q��−1, calculated in the two-wave approximation, and
the polariton localization length Lloc, arising due to the sys-
tem nonperiodicity. The latter two lengths depend both on �
and �. In the case Labs�Lloc, the optical spectra are de-
scribed in terms of the two-wave approximation; for L
�Labs they contain fringes formed due to the Fabri-Perot
interference and vary with increasing N, while for L�Labs
the spectra are smooth functions of � independent of N. In
the opposite case Lloc�Labs, the two-wave approximation is
invalid and the spectral fine structure is formed by the polar-
iton localized states. Since for small values of � the exactly
calculated optical spectra retain the oscillatory character with
N→� we conclude that in this case Labs exceeds Lloc.

Our results obtained for the semiconductor QW chains
can be extended and used for understanding the collective
linear response of various polaritonic aperiodic structures.
The developed theory can be straightforwardly applied, e.g.,
to the coupled resonator optical waveguides52 and other re-
lated systems, where the extra degree of freedom, introduced
by aperiodicity, will provide an extra tunability of the optical
properties.
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APPENDIX

Here we will analyze the second order of the perturbation
theory at the point K=−K�=Ghh� /2
q0 and confirm the
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high accuracy of the stop-band edges defined by Eq. �24�.
We consider the terms in Eq. �17� proportional to the

structure-factor coefficients fh−g,h�−g�
� as a perturbation. Then

keeping the second order contributions we obtain the follow-
ing equations for the amplitudes EK and EK�=E−K:

�q2 − K2 + ��1 + �d̄2�11��EK + ��fhh�
� + �d̄2�12�E−K = 0,

��fhh� + �d̄2�21�EK + �q2 − K2 + ��1 + �d̄2�22��E−K = 0.

�A1�

Here �=2q�=2q�0 / �d̄��0−�+ i���,

�11 = �22 =
1

d̄2
�

�g,g����h,h��

�g,g����0,0�

�fgg��
2

�K − Ggg��
2 − K2 , �A2�

�21 = �12
� =

1

d̄2
�

�g,g����h,h��

�g,g����0,0�

fh−g,h�−g�fgg�

�K − Ggg��
2 − K2 . �A3�

We remind that, for the Fibonacci chains, the structure-factor
coefficients are given by

fgg� =
sin Sgg�

Sgg�
exp�i

� − 2

�
Sgg��, Sgg� =

��

�2 + 1
��g� − g� .

�A4�

The applied perturbation theory differs from the standard one
by the presence of terms in the corresponding sums with the
denominators �K−Ggg��

2−K2 arbitrarily close to zero. How-
ever the sums are finite because the smallness of the denomi-
nator at particular values of g and g� is compensated by
much smaller values of the numerators for the same values of
g ,g�. The convergence of sum �A2� for pairs g ,g� where
Ggg��0 or Ggg��Ghh� is checked as follows. Taking into
account the symmetry property �fgg��= �f−g,−g�� we can per-
form the following replacement in Eq. �A2�:

�fgg��
2

�K − Ggg��
2 − K2 →

�fgg��
2

Ggg�
2 − Ghh�

2 .

Therefore, this sum converges for the pairs g ,g� with Ggg�
tending to zero. Now let us consider the sequence of pairs
�g ,g��= �h+k ,h�+k��, where

k = mFj, k� = − mFj+1,

Fj are the Fibonacci numbers and m is any integer
�1, �2. . . different from 0. Taking into account that

Fj =
� j − �1 − �� j

2� − 1
,

Fj

�
− Fj−1 =

�1 − �� j−1

�

the chosen sequence possesses the properties

Ggg� − Ghh� = − m
2�

d̄

�1 − �� j−1

�
,

Sgg�
2 �j → �� � � �m�

2� − 1
�2

�2�j−1�.

and, hence, with increasing j one has

�Ggg� − Ghh��Sgg�
2

� �m�3� j ,

which means that the sum

�
m,j

�Ggg� − Ghh��
−1Sgg�

−2

converges. The convergence in Eq. �A3� is checked in a
similar way.

Numerical calculation performed for the Fibonacci QW
chain with �h ,h��= �1,0� shows that ��11� and ��22� are both

smaller than 0.1. The prefactor �d̄2 in Eq. �A1� is small as
compared with fhh� whenever

max���0 − ��,�� �
2��0

�fhh��
�h +

h�

�
� . �A5�

We conclude that, for wave �16� with K=q0, the contribu-
tions from the wave vectors Ggg� different from 0 and Ghh�
are negligible within the applicability range of Eq. �A5�.
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